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Overview

e Background on gemini interconnect
e Bisection bandwidth

e Job-job interference

e Node allocations

e Rank reordering

e Topology-aware applications

e Node selection and task placement



Background o

Blue Waters Interconnect |

e Topology is 24x24x24
gemini routers

e 2 nodes per gemini, 2
geminis per blade

e 15x6x24 XK geminis (red)

e Service blades randomly
distributed (yellow)

e Y-links between blades
have 1/2 bandwidth of X-
or Z-links

e 2 nodes on same gemini don't
use interconnect to exchange
messages

e Routing algorithm is X,
then Y, then Z
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Background . o

e Routing takes shortest
path

e If path spans > 1/2 of
nodes in given dimension,
some communication may
wrap around torus through
nodes not assigned to job

e Jobs share interconnect
for application
communication, 10

e Run times affected by task
placement, other running
jobs

e Figure: job on green geminis
passes messages through blue
geminis

e
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Task Placement and Interference

e Applications that perform more
communication are often more sensitive to
placement and interference

e Applications with All-to-All communication patterns
tend to compete more with other jobs

e Such applications can benefit significantly from
topology-aware node selection

e Applications with only nearest-neighbor
communication in their virtual topology, if
poorly placed, actually perform pairwise
communication between randomly located
nodes
e “Random pairs” is like 1 stage of an All-to-All

e Thus, analysis below of bisection bandwidth for All-
to-All is relevant to many types of applications

Optimal

)
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Node Allocations: ALPS & Job Scheduler

e ALPS provides the scheduler
(Torque/Moab) with list of compute
nodes in specific order:

e 2x2x2 gemini blocks in space-fulling curve
e Favors YZ slabs

e Over time, after many jobs start &
end, list of available nodes becomes
increasingly fragmented

e Less compact allocations

e Longer communication paths

e More job-job interference

e Less consistent, longer run times

e Significant Cray/Adaptive/NCSA
efforts underway to provide more
compact allocations

e Favor XZ slabs & regular prisms
e Request specified shapes
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Example: PSDNS Turbulence Application
CFD UsingFPseudo-Spectral Method

e Uses 3D FFTs of fluid variables to compute
spatial derivatives

e Implementation uses 2D pencil
decomposition

o ro_r 3D FFT, must transpose full 3D arrays
wice:
e Begin with partitions spanning domain in x
e 1D FFTs along x

e Transpose within xy planes so each partition spans
domaininy

e 1D FFTs alon%y
e Transpose within yz planes so each partition spans
domain in z

e IDFFTsalongz .

e After some calculations regumng no
communication, inverse 3D FFTs are
performed in similar fashion

o Dtozens of forward and inverse 3D FFTs per time
step

e Transposes comprise 50-75% of run time

e Compute time includes local field variable updates
packing/unpacking communication buffers, 1D FFTs
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PSDNS Simple Performance Model

For N*3 grid points and P tasks
e Computation time ~ N*3 * (const. + log N)
e Communication time ~ All-to-All time

e All-to-All time ~ Data volume/bisection bandwidth
~ NA3/bisection bandwidth

e For naive weak scaling experiments, N*3/P is
held constant
e Computation time grows slowly with P
e Communication time ~ P/bisection bandwidth

e Thus, near-ideal weak scaling requires bisection
bandwidth ~ P, or constant bisection bandwidth/
node

e Minimizing time to solution means maximizing
bisection bandwidth per node



Bisection Bandwidth: Full System .o

e Bisection bandwidth of nodes in use determines run time
for All-to-All

e Bisection bandwidth is defined as lowest bandwidth
through any cross-sectional area
e BW topology is 24x24x24 geminis
e Bisection bandwidth through cross section:
e Normal to X: 24x24*X-link-bw*2 for torus / ?TTTTTT
e Normal to Y: 24x24*Y-link-bw*2 for torus M
e Normal to Z: 24x24*Z-link-bw*2 for tours [T

e Y-link bandwidth ~ 1/2 X-link or Z-link bandwidth
e Bisection bandwidth normal to Y ~ 24x24*Z-link-bw
e Limits All-to-All
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Bisection Bandwidth: Large Slab .

e Consider subset of nodes: 24x6x24 , 1
e Contains Y. of all nodes g &ﬁﬁﬁ 7
e Bisection bandwidth through cross section: [~
e Normal to X: 6*24*X-link-bw*2 for torus ~ 12x24*Z-link-bw
e Normal to Y: 24x24*Y-link-bw ~ 24x12*Z-link-bw
e Normal to Z: 24x6*Z-link-bw*2 for tours = 24x12 Z-link-bw
e Bisection bandwidth normal to Y ~ EQUALS that of other
directions

e Bisection bandwidth for this subset is ~1/2 of bisection
bandwidth for full system

e Gives highest bandwidth per node for All-to-All
communication on ~ 2k nodes or more




Bisection Bandwidth: Small slab XS

e 24x6x24 gemini subsection best for ~ 6k nodes |
o 24x4x24 best for ~ 4k nodes

e Consider smaller node counts, e.g., 12x6x12 so no
wrapping occurs (shortest route is used)
e ~1700 nodes, ~1/16 of all nodes in system

e Bisection bandwidth through cross section:

e Normal to X: 6*12*X-link-bw ~ 12*6*Z-link-bw
e Normal to Y: 12*12*Y-link-bw ~ 12*6*Z-link-bw
e Normal to Z: 12*6*Z-link-bw = 12*6 Z-link-bw

e Bisection bandwidth normal to Y ~ EQUALS
that of other directions

e Bisection bandwidth for subset ~ 1/8 of bisection
bandwidth for full system

e Again gives maximum bisection bandwidth per node for All-to-All
communication
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PSDNS Optimizations

Minimize off-node communication

e Transposes require All-to-All
communication within each row (column)
of pencils

e Multiple concurrent All-to-Alls on all rows
(columns), not global All-to-All

e Eliminate inter-nodal communication for
xy transposes

e Place 1 or more full xy planes of domain per
node

e Each node has an entire row (16 or 32) of
pencils

e In benchmark runs with a 6k*3 grid on
3072 nodes, this strategy reduced the
overall run time by up to 1.72X!
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PSDNS Optimizations: Maximize Bandwidth . o

Improving Transposes, Il \
e YZ Transposes require off-node communication
e One process per node in each column communicator
e Communication time depends on effective All-to-All bandwidth for
nodes in job (plus any additional nodes relaying messages)
e Two approaches for increasing effective All-to-all
bandwidth via placement
1.  Request node set with predefined shape (“features”)
https://wiki.ncsa.illinois.edu/display/BWDOC/Moab+FEATURES+and
+Shapes
#PBS -l nodes=6144:ppn=32

#PBS -nodeset=ONEOF:FEATURE:s1 6700n:s2_6700n:s3_6700n....
e Bonus: job-job interference often reduced

2. (Coming in 2014) Request node allocation with specified shape
e XbyY byZgeminis
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PSDNS: Effect of Slab Orientation

Allocation has fixed shape & number of
nodes

e 6k XE node job

e 6x24x24 XE gemini region

e Ave max time per step: 35.3 s

e 23x6x24 XE gemini region
e 2X more bisection bandwidth per node
e Ave max time per step: 21.5 s

e Job in slab normal to X takes 1.64X longer
than job in slab normalto Y
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Virtual Topologies and Task Placement o

e Many applications define Cartesian grid virtual topologies |
e MPI_CartCreate

e Roll your own (i, j, ...) virtual coordinates for each rank
e Craypat rank placement
e Automatic generation of rank order based on detected grid topology
e grid_order tool
e User specifies virtual topology to obtain rank order file
e Node list by default is in whatever order ALPS/MOAB provide
e These tools can be very helpful in reducing off-node
communication, but they do not explicitly place
neighboring groups of partitions in virtual topology onto
neighboring nodes in torus
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Examples: 2D Virtual topology

grid_order-C —c 4,2 -g 8,8

e Ranks ordered with 1st dim
changing fastest

e Nodes get 4x2 partitions

e Rank order is
e 0,1,2,3,8,9,10,11 on 15t node
e 456,7,12,13,14,15 on 2d
e Node pairis 8x2

grid order-R-c 4,2 -g 8,8

¢ Ranks ordered with 2" dim |

changing fastest (MPI does
it this way)

e Rank order is
e 0,1,8,9,16,17,24,25 on 1st node
e 2,3,10,11,18,19,26,27 on 2nd
e Node pairis 4x4
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Examples: 2D Virtual Topology

Stencil
Node 0
Node 1 [SIA88]
WRF
e 2D mesh, 6075x6075
cells 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

o 4560 nodes, 16 tasks s &1 82 83 84 85 86 87 88 89 9 91 92 93 94 95
per node, 72960 tasks -«

e 2 OpenMP threads

e Found best
performance with
grid_order -C -¢ 2,8 -g

190,384

e Node pairis 4x8

e ~18% speedup over
SMP ordering

—_—

20 21 22 23 24 25 26 27 28 29 30 31

36 37 38 39 40 41 42 43 44 45 46 47

52 53 54 55 56 57 58 59 60 61 62 63

68 69 70 71 72 73 74 75 76 77 78 79

84 85 86 87 88 89 90 91 92 93 94 95




Examples: 3D Cubed Sphere

SPECFEM3D_GLOBE
e Quad element unstructured grid
e 5419 nodes, 32 tasks per node

e Craypat detected a 1020x170 grid

pattern (8 less than # tasks)

e On-node 81% of total B/task w/Custom

e On-node 48% of total B/task w/SMP
e Found best performance with
grid_order -R -c 4,1 -g 1020,170

e Each node gets eight 4x1 patches

e Also tried —c 8,2, etc.

e 16% speedup over SMP ordering

=

- T
o

o ','(,/



Examples: 4D Virtual Topology

MILC
e 4D Lattice, 84x84x84x144
e 4116 nodes, 16 tasks per node, 65856 tasks
e 6x6x6x6 lattice points per task
e Found best performance with
grid _order -R -c 2,2,2,2 -g 14,14,14,24
e 1.9X speedup over SMP ordering!

e Difficult to map 4D virtual topology onto 3D torus using 2x2x2x2

e Possible to improve performance further by selecting which nodes to
use (later)
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Choosing Tile Sizes

e Consider applications that perform nearest-
neighbor communication in a 3D virtual
Cartesian grid
e Assume same amount of communication in each direction

e Communication time for halo exchange ~

tile_face_ points / link_bandwidth
e Cubic tile: same face points in all 3 directions
e T _comm_cubic_x ~ tile_face_points / X-link-bw
e T _comm_cubic y ~ tile_face points / Y-link-bw
e T _comm_cubic_z ~ tile_face points / Z-link_bw

o L%ngest time is T_comm_cubic_y, by a factor of
e Limits performance if 3 directions done
concurrently:
e T _comm_cubic = L*2/Y-link-bw =2 * T _comm_cubic_x
e If directions must be done in sequence
e T _comm_cubic ~4* T_comm_cubic_x
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Choosing Tile Sizes .o

e \

e Elongated tile: assume same # points as cubic tile, ‘
but different # of face points in different directions
e T comm_x~ X face points / X-link_bw .
e T comm_y~Y face points/ Y-link_bw
e T comm _z~Z face points/ Z-link_bw

e These three times are equal if L x
e X face points = Z face points = 2*Y face points L —ﬁ_)
e L y=2"L x <
e V =L"3from cubiccase = L x=L/2"1/3) L_y
e T comm_x=2*1/3) T_comm_cubic x

e If communication for all 3 directions concurrent
e T comm=T_comm_cubic *24(1/3) /2 =0.63 * T_comm_cubic
e If 3 directions done in sequence
e T comm_seq=T comm cubic seq *2*(1/3) * (3/4)
=0.945*T comm_cubic _seq
e Bottom line: If possible, do all 3 directions

$oncurrently and use tiles with 2X more cells along
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Choosing Tile Sizes .o

Example: tile size for cubic grid
e Global mesh with 102473 zones, 32x32x32 partitions !

e To get cubic tiles
e Could have 4x4x2 partitions per node
e Does not take slower y-links into account

e To get 2X more points along y - 1/2 as many y-partitions
e Partition global mesh with 100043 zones as 40x20x40

Each partition has 25x50x25 mesh zones

Could have 4x2x4 partitions per node

Up to 1.6X faster halo exchanges than 3273 partition case, provided
communication is done over all 3 dimensions at once

e Only 6% improvement if exchanges are done 1 dimension at a time
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Going Beyond Simple Rank Reordering . o

Significant improvement possible

e Can we place tasks on a given set of nodes
so that virtual neighbors are nearby on torus?
e Difficult problem for arbitrary node lists

e Possibly helpful library: Hoefler’s LibTopoMap
http://htor.inf.ethz.ch/research/mpitopo/libtopomap/

e Not widely used

e Can we specify size of prism of geminis and
directly map virtual topology to torus?
e Use predefined node sets, or request via qsub (2014)
e Presence of service & down nodes complicates this
e Two ways to do mapping:

1. Write a topology-aware application (hard)
2. Use Topaware tool (easy, no source code changes)
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How To Get Node IDs and Torus Coordinates ==A.‘Yf '

e \

MPI )

e Use MPI_Cart_Create, MPI_Cart_coords, |
MPI_Cart_Shift, etc. to get ranks of neighboring tasks |

e Suppose array rnks(0:nbrs) contains my rank and ranks of nbrs
neighbors

e Use Cray libs (next slide) to get node IDs and coords.

my_prog.fo90

integer, parameter :: size=10 ! match torus_coords.c

integer isize,rnks(0:size-1),nid(0:size-1), &
tx(0:size-1),ty(0:size-1), tz(0:size-1)

common /cblock/ isize,rnks,nid,tx,ty,tz

isize =1 + nbrs
call torus_coords ()



torus_coords.c

#include <mpi.h>
#include "pmi.h"
#include "rca_lib.h*

extern struct {
int isize, rnks[10], nid[10], tx[10], ty[10], tz[10];
} cblock_;

void torus_coords_() {
int irank, rank, *nidlist;
rca_mesh_coord_t rca_coords; // struct of unsigned short ints
uint16_t nidu;

PMI_Get_nidlist_ptr((void **)&nidlist);
/I nidlist now points to a list of nid numbers in rank order:
I nidlist[p] is the nid number of rank p in this job

for (irank=0; irank<cblock_.isize; irank++)

{
rank = cblock_.rnks[irank];
cblock_.nid[irank] = nidlist[rank];
nidu = (uint16_t) nidlist[rank];
rca_get_meshcoord(nidu, &rca_coords);
cblock_.tx[irank] = (int)rca_coords.mesh_x;
cblock_.ty[irank] = (int)rca_coords.mesh_y;
cblock_.tz[irank] = (int)rca_coords.mesh_z;

}

return;



Topaware: Node Selection and Task Placement RS SS '

e \
\

Purpose |
e Given application w/2-, 3-, or 4-D grid communication
graph
e Given particular input deck and decomposition
e Find near-optimal layout on given Cray XE/XK system
e Explore best possible performance and scaling

Limitations
e Presence of service nodes limits max node count

e Not all decompositions can be placed ideally

e Number of usable nodes along each torus direction
e Number of partitions per node

e Leaves some idle nodes in prism of geminis



Topware: New Compiled Language Version

e Helps you choose problem size/node count
that will map well to torus

e Can be used with node sets

1.

12/4/13

Choose target node count that fits in a series of
predefined “features”
https://wiki.ncsa.illinois.edu/display/BWDOC/Moab

+FEATURES+and+Shapes

Choose problem size that fits in “features” with help
from Topaware

Submit batch job targeting those features

Run Topaware within batch job to select subset of
nodes application will actually use

Specify Topaware-generated node list and rank order
on aprun command line
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Topaware Node Selection Scheme

e One XZ plane shown

e Most rows and columns
have 0 or 1 service node
(green)

e Can fit up to a 7x7
gemini layout onto this
8x8 torus cross section

e Selects 7 geminis in same
rows they would have w/o
service nodes

e All selected geminis are
also in same plane as w/o
service nodes

e Scanin Y to find enough
usable XZ planes

e Skipping an x value
rarely occurs in practice

z —>
0112 3 4 5 |6

I4 8 19 101111213
14115/16, 171819 20
21122123124 2526 27
28| 29

35| 36| 37

421431 44|45 47 148
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Extra hops for North/South exchange

e Many hubs require
second hop to reach
some neighbors

e Density of multiple hops

does not increase with
scale, nor does # hops
e Should enable nearly

ideal weak scaling,
despite extra hops

14
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Examples: 4D Halo Exchanges .

Compare default ordering, grid_order, and Topaware on \
same set of nodes (selected by Topaware). ‘

e 4D Lattice, 144x144x144x288 points
e 12x16x16x16 partitions
e 1536 nodes, 32 tasks per node, 49152 tasks

e 12x9x9x18 lattice points per task
e Periodic BCs

e Topaware: each node gets 1x2x2x8 tasks

e Run times

e Default placement (SMP): 0.0240 s
e grid order -C -g 12,16,16,16 -c 2,2,2,4: 0.0245 s (worse than default!)
e TOpaware: 0.0127 s (1.9X < default!!)



Results on Blue Waters

MILC

e 4D Lattice, 84x84x84x144

e 4116 nodes, 16 tasks per node
e 6x6x4x9 lattice points per task

e Entire 4" dimension on each node pair

e Remaining 3 dimensions mapped like any 3D virtual topology
e 14x7x21 geminis
e 1x2x1x16 partitions per node pair

e 3.7X faster than default SMP placement

e 1.9X faster than when using grid_order —c 2x2x2x2 ...
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Results on Blue Waters for VPIC .

e Plasma physics :

e 3D virtual topology

e On 2k nodes, this code spends 8% of total run time on
communication

e Ran on 4608 nodes in dedicated mode
e 12x12x16 geminis
e 4x4x2 partitions per node pair

e Best results: 5% faster total run time than default
placement



Results on Titan for S3D (R. Sankaran@ONRL) RS

e \
\

e Fluid dynamics w/ combustion :
e 3D Virtual topology
e Ran on up to ~12900 nodes in dedicated mode

e Near linear weak scaling (unlike default placement; see next slide)

e Topaware placement - faster run times than default
e 2000 nodes: 1.32X
e 6000 nodes: 1.61X
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Mapping 2D Virtual Topology to 3D Torus

T~ /,
37 7.1 é
T_>2 T_>6 6<_¢ 3 /
to1 1t = 5_4 :23
0 Jr 4 4 1 g/

e 2D domain is folded like a sheet of paper into 8 supertiles
e Fold in half along one dimension, then 3 times in the other
e No tearing — keeps neighbors close together
e Communication between tiles is confined to super-tile edges
e Folding in both dimensions overloads links shared by 4 supertiles

e Optimal when folding along just one dimension
e But results in long, thin tiles that increase “surface to volume” ratio



Staggered Supertiles

» 8 XZplanes A

o Stacked along Y T OGN

e 4&5 and 6&7
staggered in X to

avoid sharing links
e Max hops =4
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Remarks on Topaware . o

e NO application modifications are required for Topaware |
e Set MPICH_RANK_REORDER_METHOD to 3
e aprun —L cat node_list ...

e This goes beyond Craypat/grid_order rank reordering:
e \We pick which nodes to use

e We make sure that neighboring tiles (all processes on a node) in the
MPI Cartesian topology are placed on near-neighbor hubs on the torus

e \We control more precisely how ranks are placed on nodes
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FAQ

e How am | able to make these plots of nodes on BW?
e VMD, a visualization package for molecules (NCSA has tool)
e Input node lists (used by job, etc.) with torus coordinates
e “ver_sim_new” program in Topaware suite
e How do | know which nodes my job ran on?
e Place this line in your batch job script:
aprun -B -D0x10000 /bin/true | head -1 > node_list.$PBS_JOBID
e What is the best way to contact me?
e Email rfiedler@cray.com
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